If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+0.18x=0
a = 1; b = 0.18; c = 0;
Δ = b2-4ac
Δ = 0.182-4·1·0
Δ = 0.0324
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0.18)-\sqrt{0.0324}}{2*1}=\frac{-0.18-\sqrt{0.0324}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0.18)+\sqrt{0.0324}}{2*1}=\frac{-0.18+\sqrt{0.0324}}{2} $
| (X+4)(x-2)(x)=216 | | 3x+11=3+x | | 7x(2)^3x=840 | | 16/35=x/1 | | 3/7=x/25 | | .66=x/60 | | 13(6x+27)+2(x-3)=7 | | 25x=16x+52 | | 2x-16=4x-20 | | 9x2-250x-1895=0 | | -(9x+14)(x-6)=0 | | 9x2+250x+1895=0 | | 6y=(y=9) | | 4x+10+3x-4=180 | | 16=w-17 | | 2(-2y+(-3))=-18 | | 36b=4(4b-1)-84 | | 7x/8=2x+ | | 1/2(1/2x-1)=3 | | 11x+12=13x+6 | | 2x-3.5=1.4-5.3 | | -8+4=-13x-16 | | (2x-6)+(x+23)=180 | | 6c+2=12 | | (x+1)(x+2)(x+3)=40 | | w/3=3.41 | | u+2.8=18.75 | | 9x+35=4x-60 | | (4x-5)*(3x+1)-(2x-7)=0 | | 20.50x=25+18x | | 9(x+2)=4(3x) | | 64x^2-40=0 |